Foxit PhantomPDF ConvertToPDF Arbitrary File Write Remote Code Execution Vulnerability

EIP-2019-0007

The vulnerability exists within an RPC interface listening on TCP port 6000, exposed by Foxit PhantomPDF. The ConvertToPDF method of the Creator object does not properly validate the bstrDestPathName argument, allowing arbitrary files to be written under the context of the user running PhantomPDF. An attacker can create a specially crafted PDF file that will abuse this vulner- ability to achieve remote code execution.

Vulnerability Identifiers

  • Exodus Intelligence: EIP-2019-0007
  • MITRE CVE: Pending

Vulnerability Metrics

  • CVSSv2 Score: 7.5

Vendor References

Discovery Credit

  • Exodus Intelligence

Disclosure Timeline

  • Disclosed to affected vendors: February 24th, 2021
  • Disclosed to public: July 27th, 2021

Further Information

Readers of this advisory who are interested in receiving further details around the vulnerability, mitigations, detection guidance, and more can contact us at sales@exodusintel.com.

Researchers who are interested in monetizing their 0Day and NDay can work with us through our Research Sponsorship Program.

Foxit PhantomPDF CombineFiles Arbitrary File Write Remote Code Execution Vulnerability

EIP-2019-0006

The vulnerability exists within an RPC interface listening on TCP port 6000, exposed by Foxit PhantomPDF. The CombineFiles method of the Creator object does not properly validate the DestPDFFile argument, allowing arbitrary files to be written under the context of the user running PhantomPDF. An attacker can create a specially crafted PDF file that will abuse this vulnerability to achieve remote code execution.

Vulnerability Identifiers

  • Exodus Intelligence: EIP-2019-0006
  • MITRE CVE: Pending

Vulnerability Metrics

  • CVSSv2 Score: 7.5

Vendor References

Discovery Credit

  • Exodus Intelligence

Disclosure Timeline

  • Disclosed to affected vendors: February 24th, 2021
  • Disclosed to public: July 27th, 2021

Further Information

Readers of this advisory who are interested in receiving further details around the vulnerability, mitigations, detection guidance, and more can contact us at sales@exodusintel.com.

Researchers who are interested in monetizing their 0Day and NDay can work with us through our Research Sponsorship Program.

Foxit PhantomPDF ConnectedPDF DocSearch_Locator_Table SQL Injection Remote Code Execution Vulnerability

EIP-2018-0081

The vulnerability exists within the ConnectedPDF service, implemented by the FoxitPhantomConnectedPDFService.exe binary. The service listens for connections on TCP port 44440 on localhost and fails to sanitize input data before using it to construct SQL queries. This allows arbitrary files to be written under the context of the user running PhantomPDF. An attacker can create a specially crafted PDF file that will abuse this vulnerability to achieve remote code execution. Each message has a Type field, denoting the message type. The vulnerability resides in the processing of message type 1004, the handler of which is characterized by string references such as “DocSearch_Locator_Table”.

Vulnerability Identifiers

  • Exodus Intelligence: EIP-2018-0081
  • MITRE CVE: Pending

Vulnerability Metrics

  • CVSSv2 Score: 7.5

Vendor References

Discovery Credit

  • Exodus Intelligence

Disclosure Timeline

  • Disclosed to affected vendors: February 24th, 2021
  • Disclosed to public: July 27th, 2021

Further Information

Readers of this advisory who are interested in receiving further details around the vulnerability, mitigations, detection guidance, and more can contact us at sales@exodusintel.com.

Researchers who are interested in monetizing their 0Day and NDay can work with us through our Research Sponsorship Program.

Foxit PhantomPDF ConnectedPDF ConnectedPDF_DRM_Table SQL Injection Remote Code Execution Vulnerability

EIP-2018-0080

The vulnerability exists within the ConnectedPDF service, implemented by the FoxitPhantomConnectedPDFService.exe binary. The service listens for connections on TCP port 44440 on localhost and fails to sanitize input data before using it to construct SQL queries. This allows arbitrary files to be written under the context of the user running PhantomPDF. An attacker can create a specially crafted PDF file that will abuse this vulnerability to achieve remote code execution. Each message has a Type field, denoting the message type. The vulnerability resides in the processing of message type 1003, the handler of which is characterized by string references such as “ConnectedPDF_DRM_Table”.

Vulnerability Identifiers

  • Exodus Intelligence: EIP-2018-0080
  • MITRE CVE: Pending

Vulnerability Metrics

  • CVSSv2 Score: 7.5

Vendor References

Discovery Credit

  • Exodus Intelligence

Disclosure Timeline

  • Disclosed to affected vendors: February 24th, 2021
  • Disclosed to public: July 27th, 2021

Further Information

Readers of this advisory who are interested in receiving further details around the vulnerability, mitigations, detection guidance, and more can contact us at sales@exodusintel.com.

Researchers who are interested in monetizing their 0Day and NDay can work with us through our Research Sponsorship Program.

Foxit PhantomPDF ConnectedPDF DocUpdate_Notify_Table SQL Injection Remote Code Execution Vulnerability

EIP-2018-0057

The vulnerability exists within the ConnectedPDF service, implemented by the FoxitPhantomConnectedPDFService.exe binary. The service listens for connections on TCP port 44440 on localhost and fails to sanitize input data before using it to construct SQL queries. This allows arbitrary files to be written under the context of the user running PhantomPDF. An attacker can create a specially crafted PDF file that will abuse this vulnerability to achieve remote code execution. Each message has a Type field, denoting the message type. The vulnerability resides in the processing of message type 1007, the handler of which is characterized by string references such as “DocUpdate_Notify_Table”.

Vulnerability Identifiers

  • Exodus Intelligence: EIP-2018-0057
  • MITRE CVE: Pending

Vulnerability Metrics

  • CVSSv2 Score: 7.5

Vendor References

Discovery Credit

  • Exodus Intelligence

Disclosure Timeline

  • Disclosed to affected vendors: February 24th, 2021
  • Disclosed to public: July 27th, 2021

Further Information

Readers of this advisory who are interested in receiving further details around the vulnerability, mitigations, detection guidance, and more can contact us at sales@exodusintel.com.

Researchers who are interested in monetizing their 0Day and NDay can work with us through our Research Sponsorship Program.

Foxit PhantomPDF extractPages Arbitrary File Write Remote Code Execution Vulnerability

EIP-2018-0046

The vulnerability exists within the JavaScript PDF API exposed by Foxit PhantomPDF. The extractPages method of the Document object does not properly validate the export path argument, allowing arbitrary files to be written under the context of the user running PhantomPDF. An attacker can create a specially crafted PDF file that will abuse this vulnerability to achieve remote code execution.

Vulnerability Identifiers

  • Exodus Intelligence: EIP-2018-0046
  • MITRE CVE: Pending

Vulnerability Metrics

  • CVSSv2 Score: 7.5

Vendor References

Discovery Credit

  • Exodus Intelligence

Disclosure Timeline

  • Disclosed to affected vendors: February 24th, 2021
  • Disclosed to public: July 27th, 2021

Further Information

Readers of this advisory who are interested in receiving further details around the vulnerability, mitigations, detection guidance, and more can contact us at sales@exodusintel.com.

Researchers who are interested in monetizing their 0Day and NDay can work with us through our Research Sponsorship Program.

Foxit PhantomPDF loadHtmlView Context Level Bypass Vulnerability

EIP-2018-0045

The vulnerability exists within the JavaScript PDF API exposed by Foxit PhantomPDF. The loadHtmlView method of the app object invokes attacker-controlled JavaScript code in a privileged context. An attacker can create a specially crafted PDF file that will abuse this vulnerability to bypass the context based security mechanism of the JS PDF API.

Vulnerability Identifiers

  • Exodus Intelligence: EIP-2018-0045
  • MITRE CVE: Pending

Vulnerability Metrics

  • CVSSv2 Score: 6.8

Vendor References

Discovery Credit

  • Exodus Intelligence

Disclosure Timeline

  • Disclosed to affected vendors: February 24th, 2021
  • Disclosed to public: July 27th, 2021

Further Information

Readers of this advisory who are interested in receiving further details around the vulnerability, mitigations, detection guidance, and more can contact us at sales@exodusintel.com.

Researchers who are interested in monetizing their 0Day and NDay can work with us through our Research Sponsorship Program.

Vulnerability Development Courses for 2021

UPDATE: Postponed. Unfortunately due to travel restrictions related to COVID we will be postponing these trainings until February 14, 2022. We are contacting current registered students and giving them the option of a refund or credit and a guaranteed spot in our February class. We apologize to all those affected by this.

We are pleased to announce that the researchers of Exodus Intelligence will be providing publicly available training in person in early November February 2022 in Austin, TX.

In an effort to fully teach the breadth and depth of Vulnerability Intelligence and Exploitation, we have structured our offerings in the form of three distinct courses.

The intermediate course, titled the Vulnerability Assessment Class, covers a wide range of vulnerability and exploitation related topics and is intended for the beginner to intermediate level practitioner. This course is intended to prepare the student to fully defend the modern enterprise by being aware and equipped to assess the impact of vulnerabilities across the breadth of the application space.

We will also be offering an updated version of our popular Vulnerability Development Master Class. This course will cover advanced topics such as dynamic reverse engineering, kernel exploitation concepts, browser exploitation, mitigation bypasses, and other topics.

Our third offering will be our Mobile Vulnerability Exploitation Class. This class will cover advanced topics concerning mobile platforms.

Dates & Locations

All three courses will run concurrently.

  • November 1st-5th 2021, Austin, TX, USA
  • New Dates: February 14, 2022, Austin, TX, USA

Attendees should plan to travel and arrive prior to Monday, February 14th. The course work will conclude on Friday, February 18th, 2022.

Seating is limited. Since this training will be in person, there are a limited number of seats available.

Vulnerability Assessment Class

This 5 day course is designed to provide students with a comprehensive and progressive approach to understanding vulnerability and exploitation topics on both the Linux and Windows platforms. Attendees will be immersed in hands-on exercises that impart valuable skills including a deep dive into the various types of vulnerabilities exploited today, static and dynamic reverse engineering, vulnerability discovery, and exploitation of widely deployed server and client-side applications. This class will cover a lot of material and move very quickly.

Prerequisites

  • Computer with ability to run a VMWare image (recommended 16GB+ memory)
  • Some familiarity with debuggers, Python, C/C++, x86 ASM. IDA Pro experience a plus.
  • No prior vulnerability discovery experience is necessary

Syllabus to be provided in the near future.

Pricing and Registration

The cost for the 5-day course is $5000 USD per student. You may e-mail training@exodusintel.com to register and we will supply a purchase order.

We will be providing a template request form in the near future to help justify attendance to management.

Vulnerability Development Master Class

This 5 day course is designed to provide students with a comprehensive and progressive approach to understanding vulnerability and exploitation topics on both the Linux and Windows platforms. Attendees will be immersed in hands-on exercises that impart valuable skills including a deep dive into exploiting kernel and browser vulnerabilities, static and dynamic reverse engineering, 0-day vulnerability discovery, and exploitation and workarounds of current mitigations. This is a very hands on deep dive. Course will be taught by Exodus researchers.

Prerequisites

  • Computer with ability to run a VMWare image (recommended 16GB+ memory)
  • Student must be comfortable with debuggers, Python, C/C++, x86 ASM, and IDA Pro.
  • No prior vulnerability discovery experience is necessary

Syllabus to be provided in the near future.

Pricing and Registration

The cost for the 5-day course is $6500 USD per student. You may e-mail training@exodusintel.com to register and we will supply a purchase order.

We will be providing a template request form in the near future to help justify attendance to management.

Mobile Vulnerability Exploitation Class

This 5 day course is designed to provide students with a comprehensive and progressive approach to understanding advanced exploitation topics involving the Android operating system. Attendees will be immersed in hands-on exercises that impart valuable skills including a deep dive into the various types of vulnerabilities exploited today, static and dynamic reverse engineering, vulnerability discovery, and exploitation of widely deployed mobile platforms and applications. This course is highly advanced and will cover difficult materials. Course will be taught by Exodus researchers.

Prerequisites

  • Computer with ability to run a VMWare image (recommended 16GB+ memory)
  • Some comfort with debuggers, Python, C/C++, ARM ASM and IDA Pro
  • No prior vulnerability discovery experience is necessary

Syllabus to be provided in the near future.

Pricing and Registration

The cost for the 5-day course is $7500 USD per student. You may e-mail training@exodusintel.com to register and we will supply a purchase order.

We will be providing a template request form in the near future to help justify attendance to management.

Covid-19 and Travel

We understand that travel conditions are constantly changing due to Covid-19. To that end, Exodus will adjust the course if necessary. If the situation arises that requires adjustment, Exodus will release an official statement and alert all registered students. In the case of cancellation, refunds (or course credit for future offerings at student’s discretion) will be provided.

Analysis of a Heap Buffer-Overflow Vulnerability in Microsoft Windows Address Book

By Eneko Cruz Elejalde

Overview

This post analyzes a heap-buffer overflow in Microsoft Windows Address Book. Microsoft released an advisory for this vulnerability for the 2021 February patch Tuesday. This post will go into detail about what Microsoft Windows Address Book is, the vulnerability itself, and the steps to craft a proof-of-concept exploit that crashes the vulnerable application.

Windows Address Book

Windows Address Book is a part of the Microsoft Windows operating system and is a service that provides users with a centralized list of contacts that can be accessed and modified by both Microsoft and third party applications. The Windows Address Book maintains a local database and interface for finding and editing information about contacts, and can query network directory servers using Lightweight Directory Access Protocol (LDAP). The Windows Address Book was introduced in 1996 and was later replaced by Windows Contacts in Windows Vista and subsequently by the People App in Windows 10.

The Windows Address Book provides an API that enables other applications to directly use its database and user interface services to enable services to access and modify contact information. While Microsoft has replaced the application providing the Address Book functionality, newer replacements make use of old functionality and ensure backwards compatibility. The Windows Address Book functionality is present in several Windows Libraries that are used by Windows 10 applications, including Outlook and Windows Mail. In this way, modern applications make use of the Windows Address Book and can even import address books from older versions of Windows.

CVE-2021-24083

A heap-buffer overflow vulnerability exists within the SecurityCheckPropArrayBuffer() function within wab32.dll when processing nested properties of a contact. The network-based attack vector involves enticing a user to open a crafted .wab file containing a malicious composite property in a WAB record.

Vulnerability

The vulnerability analysis that follows is based on Windows Address Book Contacts DLL (wab32.dll) version 10.0.19041.388 running on Windows 10 x64.

The Windows Address Book Contacts DLL (i.e. wab32.dll) provides access to the Address Book API and it is used by multiple applications to interact with the Windows Address Book. The Contacts DLL handles operations related to contact and identity management. Among others, the Contacts DLL is able to import an address book (i.e, a WAB file) exported from an earlier version of the Windows Address Book.

Earlier versions of the Windows Address Book maintained a database of identities and contacts in the form of a .wab file. While current versions of Windows do not use a .wab file by default anymore, they allow importing a WAB file from an earlier installation of the Windows Address Book.

There are multiple ways of importing a WAB file into the Windows Address Book, but it was observed that applications rely on the Windows Contacts Import Tool (i.e, C:\Program Files\Windows Mail\wabmig.exe) to import an address book. The Import Tool loads wab32.dll to handle loading a WAB file, extracting relevant contacts, and importing them into the Windows Address Book.

WAB File Format

The WAB file format (commonly known as Windows Address Book or Outlook Address Book) is an undocumented and proprietary file format that contains personal identities. Identities may in turn contain contacts, and each contact might contain one or more properties.

Although the format is undocumented, the file-format has been partially reverse-engineered by a third party. The following structures were obtained from a combination of a publicly available third-party application and the disassembly of wab32.dll. Consequently, there may be inaccuracies in structure definitions, field names, and field types.

The WAB file has the following structure:

Offset      Length (bytes)    Field                   Description
---------   --------------    --------------------    -------------------
0x0         16                Magic Number            Sixteen magic bytes
0x10        4                 Count 1                 Unknown Integer
0x14        4                 Count 2                 Unknown Integer
0x18        16                Table Descriptor 1      Table descriptor
0x28        16                Table Descriptor 2      Table descriptor
0x38        16                Table Descriptor 3      Table descriptor
0x48        16                Table Descriptor 4      Table descriptor
0x58        16                Table Descriptor 5      Table descriptor
0x68        16                Table Descriptor 6      Table descriptor

All multi-byte fields are represented in little-endian byte order unless otherwise specified. All string fields are in Unicode, encoded in the UTF16-LE format.

The Magic Number field contains the following sixteen bytes: 9c cb cb 8d 13 75 d2 11 91 58 00 c0 4f 79 56 a4. While some sources list the sequence of bytes 81 32 84 C1 85 05 D0 11 B2 90 00 AA 00 3C F6 76 as a valid magic number for a WAB file, it was found experimentally that replacing the sequence of bytes prevents the Windows Address Book from processing the file.

Each of the six Table Descriptor fields numbered 1 through 6 has the following structure:

Offset    Length    Field    Description
          (bytes)
-------   --------  -------  -------------------
0x0       4         Type     Type of table descriptor
0x4       4         Size     Size of the record described
0x8       4         Offset   Offset of the record described relative to the beginning of file
0xC       4         Count    Number of records present at offset

The following are examples of some known types of table descriptor:

  • Text Record (Type: 0x84d0): A record containing a Unicode string.
  • Index Record (Type: 0xFA0): A record that may contain several descriptors to WAB records.

Each text record has the following structure:

Offset   Length (bytes)    Field          Description
------   --------------    ------------   -------------------
0x0      N                 Content        Text content of the record; a null terminated UNICODE string
0x0+N    0x4               RecordId       A record identifier for the text record 

Similarly, each index record has the following structure

Offset      Length (bytes)    Field        Description
---------   --------------    ----------   -------------------
0x0         4                 RecordId     A record identifier for the index record
0x4         4                 Offset       Offset of the record relative to the beginning of the file

Each entry in the index record (i.e, each index record structure in succession) has an offset that points to a WAB record.

WAB Records

A WAB record is used to describe a contact. It contains fields such as email addresses and phone numbers stored in properties, which may be of various types such as string, integer, GUID, and timestamp. Each WAB record has the following structure:

Offset      Length   Field              Description
---------   ------   ---------------    -------------------
0x0         4        Unknown1           Unknown field
0x4         4        Unknown2           Unknown field
0x8         4        RecordId           A record identifier for the WAB record
0xC         4        PropertyCount      The number of properties contained in RecordProperties
0x10        4        Unknown3           Unknown field 
0x14        4        Unknown4           Unknown field 
0x18        4        Unknown5           Unknown field 
0x1C        4        DataLen            The length of the RecordProperties field (M)
0x20        M        RecordProperties   Succession of subproperties belonging to the WAB record

The following fields are relevant:

  • The RecordProperties field is a succession of record property structures.
  • The PropertyCount field indicates the number of properties within the RecordProperties field.

Record properties can be either simple or composite.

Simple Properties

Simple properties have the following structure:

Offset      Length (bytes)    Field       Description
---------   --------------    ---------   -------------------
0x0         0x2               Tag         A property tag describing the type of the contents
0x2         0x2               Unknown     Unknown field
0x4         0x4               Size        Size in bytes of Value member (X)
0x8         X                 Value       Property value or content

Tags of simple properties are smaller than 0x1000, and include the following:

Tag Name        Tag Value    Length      Description
                             (bytes)
---------       -----------  ---------   -------------------
PtypInteger16   0x00000002   2           A 16-bit integer
PtypInteger32   0x00000003   4           A 32-bit integer
PtypFloating32  0x00000004   4           A 32-bit floating point number
PtypFloating64  0x00000005   8           A 64-bit floating point number
PtypBoolean     0x0000000B   2           Boolean, restricted to 1 or 0
PtypString8     0x0000001E   Variable    A string of multibyte characters in externally specified
                                         encoding with terminating null character (single 0 byte)
PtypBinary      0x00000102   Variable    A COUNT field followed by that many bytes
PtypString      0x0000001F   Variable    A string of Unicode characters in UTF-16LE format encoding
                                         with terminating null character (0x0000).
PtypGuid        0x00000048   16          A GUID with Data1, Data2, and Data3 filds in little-endian
PtypTime        0x00000040   8           A 64-bit integer representing the number of 100-nanosecond
                                         intervals since January 1, 1601
PtypErrorCode   0x0000000A   4           A 32-bit integer encoding error information

Note the following:

  • The aforementioned list is not exhaustive. For more property tag definitions, see this.
  • The value of PtypBinary is prefixed by a COUNT field, which counts 16-bit words.
  • In addition to the above, the following properties also exist; their usage in WAB is unknown.
    • PtypEmbeddedTable (0x0000000D): The property value is a Component Object Model (COM) object.
    • PtypNull (0x00000001): None: This property is a placeholder.
    • PtypUnspecified (0x00000000): Any: this property type value matches any type;

Composite Properties

Composite properties have the following structure:

Offset  Length     Field             Description
        (bytes)
------  ---------  ----------------- -------------------
0x0     0x2        Tag               A property tag describing the type of the contents
0x2     0x2        Unknown           Unknown field
0x4     0x4        NestedPropCount   Number of nested properties contained in the current WAB property
0x8     0x4        Size              Size in bytes of Value member (X)
0xC     X          Value             Property value or content

Tags of composite properties are greater than or equal to 0x1000, and include the following:

Tag Name                Tag Value
---------               ----------
PtypMultipleInteger16   0x00001002
PtypMultipleInteger32   0x00001003
PtypMultipleString8     0x0000101E
PtypMultipleBinary      0x00001102
PtypMultipleString      0x0000101F
PtypMultipleGuid        0x00001048
PtypMultipleTime        0x00001040


The Value field of each composite property contains NestedPropCount number of Simple properties of the corresponding type.

In case of fixed-sized properties (PtypMultipleInteger16, PtypMultipleInteger32, PtypMultipleGuid, and PtypMultipleTime), the Value field of a composite property contains NestedPropCount number of the Value field of the corresponding Simple property.

For example, in a PtypMultipleInteger32 structure with NestedPropCount of 4:

  • The Size is always 16.
  • The Value contains four 32-bit integers.

In case of variable-sized properties (PtypMultipleString8, PtypMultipleBinary, and PtypMultipleString), the Value field of the composite property contains NestedPropCount number of Size and Value fields of the corresponding Simple property.

For example, in a PtypMultipleString structure with NestedPropCount of 2 containing the strings “foo” and “bar” in Unicode:

  • The Size is 14 00 00 00.
  • The Value field contains a concatenation of the following two byte-strings:
    • “foo” encoded with a four-byte length: 06 00 00 00 66 00 6f 00 6f 00.
    • “bar” encoded with a four-byte length: 06 00 00 00 62 00 61 00 72 00.

Technical Details

The vulnerability in question occurs when a malformed Windows Address Book in the form of a WAB file is imported. When a user attempts to import a WAB file into the Windows Address Book, the method WABObjectInternal::Import() is called, which in turn calls ImportWABFile(). For each contact inside the WAB file, ImportWABFile() performs the following nested calls: ImportContact(), CWABStorage::ReadRecord(), ReadRecordWithoutLocking(), and finally HrGetPropArrayFromFileRecord(). This latter function receives a pointer to a file as an argument and reads the contact header and extracts PropertyCount and DataLen. The function HrGetPropArrayFromFileRecord() in turn calls SecurityCheckPropArrayBuffer() to perform security checks upon the imported file and HrGetPropArrayFromBuffer() to read the contact properties into a property array.

The function HrGetPropArrayFromBuffer() relies heavily on the correctness of the checks performed by SecurityCheckPropArrayBuffer(). However, the function fails to implement security checks upon certain property types. Specifically, SecurityCheckPropArrayBuffer() may skip checking the contents of nested properties where the property tag is unknown, while the function HrGetPropArrayFromBuffer() continues to process all nested properties regardless of the security check. As a result, it is possible to trick the function HrGetPropArrayFromBuffer() into parsing an unchecked contact property. As a result of parsing such a property, the function HrGetPropArrayFromBuffer() can be tricked into overflowing a heap buffer.

Code Analysis

The following code blocks show the affected parts of methods relevant to this vulnerability. Code snippets are demarcated by reference markers denoted by [N]. Lines not relevant to this vulnerability are replaced by a [Truncated] marker.

The following is the pseudocode of the function HrGetPropArrayFromFileRecord:

[1]

if ( !(unsigned int)SecurityCheckPropArrayBuffer(wab_buffer_full, HIDWORD(uBytes[1]), wab_buffer[3]) )
  {

[2]
    result = 0x8004011b;        // Error
    goto LABEL_25;              // Return prematurely
  }

[3]
  result = HrGetPropArrayFromBuffer(wab_buffer_full, HIDWORD(uBytes[1]), wab_buffer[3], 0, a7);

At [1] the function SecurityCheckPropArrayBuffer() is called to perform a series of security checks upon the buffer received and the properties contained within. If the check is positive, then the input is trusted and processed by calling HrGetPropArrayFromBuffer() at [3]. Otherwise, the function returns with an error at [2].

The following is the pseudocode of the function SecurityCheckPropArrayBuffer():

    __int64 __fastcall SecurityCheckPropArrayBuffer(unsigned __int8 *buffer_ptr, unsigned int buffer_length, int header_dword_3)
    {
      unsigned int security_check_result; // ebx
      unsigned int remaining_buffer_bytes; // edi
      int l_header_dword_3; // er15
      unsigned __int8 *ptr_to_buffer; // r9
      int current_property_tag; // ecx
      __int64 c_dword_2; // r8
      unsigned int v9; // edi
      int VA; // ecx
      int VB; // ecx
      int VC; // ecx
      int VD; // ecx
      int VE; // ecx
      int VF; // ecx
      int VG; // ecx
      int VH; // ecx
      signed __int64 res; // rax
      _DWORD *ptr_to_dword_1; // rbp
      unsigned __int8 *ptr_to_dword_0; // r14
      unsigned int dword_2; // eax
      unsigned int v22; // edi
      int v23; // esi
      int v24; // ecx
      unsigned __int8 *c_ptr_to_property_value; // [rsp+60h] [rbp+8h]
      unsigned int v27; // [rsp+68h] [rbp+10h]
      unsigned int copy_dword_2; // [rsp+70h] [rbp+18h]

      security_check_result = 0;
      remaining_buffer_bytes = buffer_length;
      l_header_dword_3 = header_dword_3;
      ptr_to_buffer = buffer_ptr;
      if ( header_dword_3 )                      
      {
        while ( remaining_buffer_bytes > 4 )        
        {

[4]

          if ( *(_DWORD *)ptr_to_buffer & 0x1000 )  
          {

[5]

            current_property_tag = *(unsigned __int16 *)ptr_to_buffer;
            if ( current_property_tag == 0x1102 ||                    
                 (unsigned int)(current_property_tag - 0x101E) <= 1 ) 
            {                         

[6]
                                      
              ptr_to_dword_1 = ptr_to_buffer + 4;                     
              ptr_to_dword_0 = ptr_to_buffer;
              if ( remaining_buffer_bytes < 0xC )                     
                return security_check_result;                         
              dword_2 = *((_DWORD *)ptr_to_buffer + 2);
              v22 = remaining_buffer_bytes - 0xC;
              if ( dword_2 > v22 )                                     
                return security_check_result;                         
              ptr_to_buffer += 12;
              copy_dword_2 = dword_2;
              remaining_buffer_bytes = v22 - dword_2;
              c_ptr_to_property_value = ptr_to_buffer;                
              v23 = 0;                                                
              if ( *ptr_to_dword_1 > 0u )
              {
                while ( (unsigned int)SecurityCheckSingleValue(
                                        *(_DWORD *)ptr_to_dword_0,
                                        &c_ptr_to_property_value,
                                        ©_dword_2) )
                {
                  if ( (unsigned int)++v23 >= *ptr_to_dword_1 )       
                  {                                                   
                    ptr_to_buffer = c_ptr_to_property_value;
                    goto LABEL_33;
                  }
                }
                return security_check_result;
              }
            }
            else                                                         
            {
             
[7]

              if ( remaining_buffer_bytes < 0xC )
                return security_check_result;
              c_dword_2 = *((unsigned int *)ptr_to_buffer + 2);       
              v9 = remaining_buffer_bytes - 12;
              if ( (unsigned int)c_dword_2 > v9 )                     
                return security_check_result;                         
              remaining_buffer_bytes = v9 - c_dword_2;
              VA = current_property_tag - 0x1002;                     
              if ( VA )
              {
                VB = VA - 1;
                if ( VB && (VC = VB - 1) != 0 )
                {
                  VD = VC - 1;
                  if ( VD && (VE = VD - 1) != 0 && (VF = VE - 1) != 0 && (VG = VF - 13) != 0 && (VH = VG - 44) != 0 )
                    res = VH == 8 ? 16i64 : 0i64;
                  else
                    res = 8i64;
                }
                else
                {
                  res = 4i64;
                }
              }
              else
              {
                res = 2i64;
              }
              if ( (unsigned int)c_dword_2 / *((_DWORD *)ptr_to_buffer + 1) != res ) 
                return security_check_result;                                        
                                                                                     

              ptr_to_buffer += c_dword_2 + 12;
            }
          }
          else                                     
          {                                        

[8]

            if ( remaining_buffer_bytes < 4 )       
              return security_check_result;
            v24 = *(_DWORD *)ptr_to_buffer;         
            c_ptr_to_property_value = ptr_to_buffer + 4;// new exe: v13 = buffer_ptr + 4;
            v27 = remaining_buffer_bytes - 4;       
            if ( !(unsigned int)SecurityCheckSingleValue(v24, &c_ptr_to_property_value, &v27) )
              return security_check_result;
            remaining_buffer_bytes = v27;
            ptr_to_buffer = c_ptr_to_property_value;
          }
    LABEL_33:
          if ( !--l_header_dword_3 )
            break;
        }
      }
      if ( !l_header_dword_3 )
        security_check_result = 1;
      return security_check_result;
    }

At [4] the tag of the property being processed is checked. The checks performed depend on whether the property processed in each iteration is a simple or a composite property. For simple properties (i.e, properties with tag lower than 0x1000), execution continues at [8]. The following checks are done for simple properties:

  1. If the remaining number of bytes in the buffer is fewer than 4, the function returns with an error.
  2. A pointer to the property value is obtained and SecurityCheckSingleValue() is called to perform a security check upon the simple property and its value. SecurityCheckSingleValue() performs a security check and increments the pointer to point at the next property in the buffer, so that SecurityCheckPropArrayBuffer() can check the next property on the next iteration.
  3. The number of total properties is decremented and compared to zero. If equal to zero, then the function returns successfully. If different, the next iteration of the loop checks the next property.

Similarly, for composite properties (i.e, properties with tag equal or higher than 0x1000) execution continues at [5] and the following is done.

For variable length composite properties (if the property tag is equal to 0x1102 (PtypMultipleBinary) or equal or smaller than 0x101f (PtypMultipleString)), the code at [6] does the following:

  1. The number of bytes left to read in the buffer is compared with 0xC to avoid overrunning the buffer.
  2. The Size field of the property is compared to the remaining buffer length to avoid overrunning the buffer.
  3. For each nested property, the function SecurityCheckSingleValue() is called. It:
    1. Performs a security check on the nested property.
    2. Advances the pointer to the buffer held by the caller, in order to point to the next nested property.
  4. The loop runs until the number of total properties in the contact (decremented in each iteration) is zero.

For fixed-length composite properties (if the property tag in question is different from 0x1102 (PtypMultipleBinary) and larger than 0x101f (PtypMultipleString)), the following happens starting at [7]:

  1. The number of bytes left to read in the buffer is compared with 0xC to avoid overrunning the buffer.
  2. The Size is compared to the remaining buffer length to avoid overrunning the buffer.
  3. The size of each nested property, which depends only on the property tag, is calculated from the parent property tag.
  4. The Size is divided by NestedPropCount to obtain the size of each nested property.
  5. The function returns with an error if the calculated subproperty size is different from the property size deduced from parent property tag.
  6. The buffer pointer is incremented by the size of the parent property value to point to the next property.

Unknown or non-processable property types are assigned the nested property size 0x0.

It was observed that if the calculated property size is zero, the buffer pointer is advanced by the size of the property value, as described by the header. The buffer is advanced regardless of the property size and by advancing the buffer, the security check permits the value of the parent property (which may include subproperties) to stay unchecked. For the security check to pass the result of the division performed on Step 4 for fixed-length composite properties must be zero. Therefore for an unknown or non-processable property to pass the security check, NestedPropCount must be larger than Size. Note that since the size of any property in bytes is at least two, NestedPropCount must always be no larger than half of Size, and therefore, the aforementioned division must never be zero in benign cases.

After the checks have concluded, the function returns zero for a failed check and one for a passed check.

Subsequently, the function HrGetPropArrayFromFileRecord() calls HrGetPropArrayFromBuffer(), which aims to collect the properties into an array of _SPropValue structs and return it to the caller. The _SPropValue array has a length equal of the number of properties (as given by the contact header) and is allocated in the heap through a call to LocalAlloc(). The number of properties is multiplied by sizeof(_SPropValue) to yield the total buffer size. The following fragment shows the allocation taking place:

    if ( !property_array_r )
    {
        ret = -2147024809;
        goto LABEL_71;
    }
    *property_array_r = 0i64;
    header_dword_3_1 = set_to_zero + header_dword_3;

[9]

    if ( (unsigned int)header_dword_3_1 < header_dword_3       
      || (unsigned int)header_dword_3_1 > 0xAAAAAAA            
      || (v10 = (unsigned int)header_dword_3_1,                               
          property_array = (struct _SPropValue *)LocalAlloc(
                                                   0x40u,
                                                   0x18 * header_dword_3_1),
                                                   // sizeof(_SPropValue) * n_properties_in_binary
        (*property_array_r = property_array) == 0i64) )
    {
        ERROR_INSUFICIENT_MEMORY:
        ret = 0x8007000E;
        goto LABEL_71;
    }

An allocation of sizeof(_SPropValue) * n_properties_in_binary can be observed at [9]. Immediately after, each of the property structures are initialized and their property tag member is set to 1. After initialization, the buffer, on which security checks have already been performed, is processed property by property, advancing the property a pointer to the next property with the property header and value sizes provided by the property in question.

If the property processed by the specific loop iteration is a simple property, the following code is executed:

    if ( !_bittest((const signed int *)¤t_property_tag, 0xCu) )
    {
      if ( v16 < 4 )
        break;
      dword_1 = wab_ulong_buffer_full[1];
      ptr_to_dword_2 = (char *)(wab_ulong_buffer_full + 2);
      v38 = v16 - 4;
      if ( (unsigned int)dword_1 > v38 )
        break;
      current_property_tag = (unsigned __int16)current_property_tag;
      if ( (unsigned __int16)current_property_tag > 0xBu )
      {

[10]

        v39 = current_property_tag - 0x1E;
        if ( !v39 )
          goto LABEL_79;
        v40 = v39 - 1;
        if ( !v40 )
          goto LABEL_79;
        v41 = v40 - 0x21;
        if ( !v41 )
          goto LABEL_56;
        v42 = v41 - 8;
        if ( v42 )
        {
          if ( v42 != 0xBA )
            goto LABEL_56;
          v43 = dword_1;
          (*property_array_r)[p_idx].Value.bin.lpb = (LPBYTE)LocalAlloc(0x40u, dword_1);
          if ( !(*property_array_r)[p_idx].Value.bin.lpb )
            goto ERROR_INSUFICIENT_MEMORY;
          (*property_array_r)[p_idx].Value.l = dword_1;
          v44 = *(&(*property_array_r)[p_idx].Value.at + 1);
        }
        else
        {
    LABEL_79:

[11]
                                           
          v43 = dword_1;
          (*property_array_r)[p_idx].Value.cur.int64 = (LONGLONG)LocalAlloc(0x40u, dword_1);
          v44 = (*property_array_r)[p_idx].Value.dbl;
          if ( v44 == 0.0 )
            goto ERROR_INSUFICIENT_MEMORY;
        }
        memcpy_0(*(void **)&v44, ptr_to_dword_2, v43);
        wab_ulong_buffer_full = (ULONG *)&ptr_to_dword_2[v43];
      }
      else
      {
    LABEL_56:               

[12]
           
        memcpy_0(&(*property_array_r)[v15].Value, ptr_to_dword_2, dword_1);
        wab_ulong_buffer_full = (ULONG *)&ptr_to_dword_2[dword_1];
      }
      remaining_bytes_to_process = v38 - dword_1;
      goto NEXT_PROPERTY;
    }

[Truncated]

    NEXT_PROPERTY:
        ++p_idx;
        processed_property_count = (unsigned int)(processed_property_count_1 + 1);
        processed_property_count_1 = processed_property_count;
        if ( (unsigned int)processed_property_count >= c_header_dword_3 )
          return 0;
      }

At [10] the property tag is extracted and compared with several constants. If the property tag is 0x1e (PtypString8), 0x1f (PtypString), or 0x48 (PtypGuid), then execution continues at [11]. If the property tag is 0x40 (PtypTime) or is not recognized, execution continues at [12]. The memcpy call at [12] is prone to a heap overflow.

Conversely, if the property being processed in the specific loop iteration is not a simple property, the following code is executed. Notably, when the following code is executed, the pointer DWORD* wab_ulong_buffer_full points to the property tag of the property being processed. Regardless of which composite property is being processed, before the property tag is identified the buffer is advanced to point to the beginning of the property value, which is at the 4th 32-bit integer.

[13]

    if ( v16 < 4 )
    break;
    c_dword_1 = wab_ulong_buffer_full[1];
    v19 = v16 - 4;
    if ( v19 < 4 )
    break;
    dword_2 = wab_ulong_buffer_full[2];
    wab_ulong_buffer_full += 3;                     

    remaining_bytes_to_process = v19 - 4;

[14]

    if ( (unsigned __int16)current_property_tag >= 0x1002u )
    {
    if ( (unsigned __int16)current_property_tag <= 0x1007u || (unsigned __int16)current_property_tag == 0x1014 )
        goto LABEL_80;
    if ( (unsigned __int16)current_property_tag == 0x101E )
    {
        [Truncated]
        
    }
    if ( (unsigned __int16)current_property_tag == 0x101F )
    {
        [Truncated]        
    }
    if ( ((unsigned __int16)current_property_tag - 0x1040) & 0xFFFFFFF7 )
    {
        if ( (unsigned __int16)current_property_tag == 0x1102 )
        {
        [Truncated]
        }
    }
    else
    {
    LABEL_80:

[15]

        (*property_array_r)[p_idx].Value.bin.lpb = (LPBYTE)LocalAlloc(0x40u, dword_2);
        if ( !(*property_array_r)[p_idx].Value.bin.lpb )
        goto ERROR_INSUFICIENT_MEMORY;
        (*property_array_r)[p_idx].Value.l = c_dword_1;
        if ( (unsigned int)dword_2 > remaining_bytes_to_process )
        break;
        memcpy_0((*property_array_r)[p_idx].Value.bin.lpb, wab_ulong_buffer_full, dword_2);
        wab_ulong_buffer_full = (ULONG *)((char *)wab_ulong_buffer_full + dword_2);
        remaining_bytes_to_process -= dword_2;
    }
    }

    NEXT_PROPERTY:
        ++p_idx;
        processed_property_count = (unsigned int)(processed_property_count_1 + 1);
        processed_property_count_1 = processed_property_count;
        if ( (unsigned int)processed_property_count >= c_header_dword_3 )
        return 0;
    }

After the buffer has been advanced at [13], the property tag is compared with several constants starting at [14]. Finally, the code fragment at [15] attempts to process a composite property (i.e. >= 0x1000) with a tag not contemplated by the previous constants.

Although the processing logic of each type of property is irrelevant, an interesting fact is that if the property tag is not recognized, the buffer pointer has still been advanced to the end of the end of its header, and it’s never retracted. This happens if all of the following conditions are met:

  • The property tag is larger or equal than 0x1002.
  • The property tag is larger than 0x1007.
  • The property tag is different from 0x1014.
  • The property tag is different from 0x101e.
  • The property tag is different from 0x101f.
  • The property tag is different from 0x1102.
  • The result of subtracting 0x1040 from the property tag, and performing a bitwise AND of the result with 0xFFFFFFF7 is nonzero.

Interestingly, if all of the above conditions are met, the property header of the composite property is skipped, and the next loop iteration will interpret its property body as a different property.

Therefore, it is possible to overflow the _SPropValue array allocated in the heap by HrGetPropArrayFromBuffer() by using the following observations:

  • A specially crafted composite unknown or non-processable property can be made to bypass security checks if NestedPropCount is larger than Size.
  • HrGetPropArrayFromBuffer() can be made to interpret the Value of a specially crafted property as a separate property.

Proof-of-Concept

In order to create a malicious WAB file from a benign WAB file, export a valid WAB file from an instance of the Windows Address Book. It is noted that Outlook Express on Windows XP includes the ability to export contacts as a WAB file.

The benign WAB file can be modified to make it malicious by altering a contact inside it to have the following characteristics:

  • A nested property containing the following:
  • A tag of an unknown or unprocessable type, for example the tag 0x1058, with the following conditions:
    • Must be larger or equal than 0x1002.
    • Must be larger than 0x1007.
    • Must be different from 0x1014, 0x101e, 0x101f, and 0x1102.
    • The result of subtracting 0x1040 from the property tag, and performing a bitwise AND of the result with 0xFFFFFFF7 is non-zero.
    • Must be different from 0x1002, 0x1003, 0x1004, 0x1005, 0x1006, 0x1007, 0x1014, 0x1040, and 0x1048.
    • NestedPropCount is larger than Size.
    • The Value of the composite property is empty.
    • A malicious simple property containing the following:
    • A property tag different from 0x1e, 0x1f, 0x40 and 0x48. For example, the tag 0x0.
    • The Size value is larger than 0x18 x NestedPropCount in order to overflow the _SPropValue array buffer.
    • An unspecified number of trailing bytes, that will overflow the _SPropValue array buffer.

Finally, when an attacker tricks an unsuspecting user into importing the specially crafted WAB file, the vulnerability is triggered and code execution could be achieved. Failed exploitation attempts will most likely result in a crash of the Windows Address Book Import Tool.

Due to the presence of ASLR and a lack of a scripting engine, we were unable to obtain arbitrary code execution in Windows 10 from this vulnerability.

Conclusion

Hopefully you enjoyed this dive into CVE-2021-24083, and if you did, go ahead and check out our other blog post on a use-after-free vulnerability in Adobe Acrobat Reader DC. If you haven’t already, make sure to follow us on Twitter to keep up to date with our work. Happy hacking!